
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

ZNSwap: un-Block your Swap
Shai Bergman, Technion; Niklas Cassel and Matias Bjørling, Western Digital;

Mark Silberstein, Technion

https://www.usenix.org/conference/atc22/presentation/bergman

ZNSwap: un-Block your Swap

Shai Bergman
Technion

Niklas Cassel
Western Digital

Matias Bjørling
Western Digital

Mark Silberstein
Technion

Abstract
We introduce ZNSwap, a novel swap subsystem optimized

for the recent Zoned Namespace (ZNS) SSDs. ZNSwap lever-

ages ZNS’s explicit control over data management on the

drive and introduces a space-efficient host-side Garbage Col-

lector (GC) for swap storage co-designed with the OS swap

logic. ZNSwap enables cross-layer optimizations, such as di-

rect access to the in-kernel swap usage statistics by the GC

to enable fine-grain swap storage management, and correct

accounting of the GC bandwidth usage in the OS resource

isolation mechanisms to improve performance isolation in

multi-tenant environments. We evaluate ZNSwap using stan-

dard Linux swap benchmarks and two production key-value

stores. ZNSwap shows significant performance benefits over

the Linux swap on traditional SSDs, such as stable through-

put for different memory access patterns, and 10× lower 99th

percentile latency and 5× higher throughput for memcached
key-value store under realistic usage scenarios.

1 Introduction

Swap is regaining interest from the academia, industry, and

kernel communities [2, 3, 12–14, 42, 43, 53, 54] as SSDs are

getting faster with both low-latency NAND and high-speed

PCIe interfaces [5, 11, 51]. Swap on SSDs is no longer viewed

as a last-resort memory-overflow mechanism, but as a crucial

system component essential for effective memory reclamation

and high system efficiency [3, 14, 18].

Unfortunately, the broader deployment of SSDs as swap

devices is overshadowed by several notable performance is-

sues. One of the key limitations is the system performance

degradation as the SSD utilization increases. For example,

Figure 1 shows a drastic swap bandwidth drop as the device

space usage grows beyond 20%, forcing low space utilization

to maintain high performance. In § 3 we thoroughly analyze

this and other performance issues with swap on SSDs, such

as bandwidth variations for different memory access patterns,

and poor isolation in a multi-tenant setting.

These performance anomalies have no simple solution.

They stem from the inherent mismatch between the easy-to-

use block-interface abstraction and the intrinsic flash media

Figure 1: Swap-out bandwidth of random memory accesses

(a common swap access pattern [43, 55]), with default Linux

swap on Block SSD and ZNSwap on ZNS SSD. The two 1TB

SSDs share the same hardware platform and media. WAF–

Write Amplification Factor.

properties. In particular, this interface deliberately conceals

the absence of in-place updates to flash-based media. Under

the hood, updates are written out-of-place to a specifically al-

located set of flash blocks (i.e., erase-block). To this end, SSD

controllers implement a Flash Translation Layer (FTL), which

translates the host-side random writes into sequential writes

required by the media, and maintains logic-to-physical map-

ping for each block. It further entails a device-side Garbage

Collection (GC) process to free up erase blocks and reclaim

capacity for new writes.

More crucially, this interface decouples the media manage-

ment from the host-side software stack, so neither the software

using the SSD nor the SSD’s management logic have any vis-

ibility into each other activities. In the context of swap, this

decoupling hinders the OS’s ability to optimize data place-

ment on the device, and the device’s ability to leverage unique

characteristics of the swap mechanisms and its usage of the

device. For example, the performance degradation observed

in Figure 1 is caused by Write Amplification (WA), i.e., the

extra data movements performed by the GC. Notably, as we

show in § 3, the Write Amplification Factor (WAF) (Figure 1,

right) could have been reduced if only the GC were aware of

the OS-managed validity status of the stored blocks.

Zoned Storage interface for SSDs (ZNS) [4] aims to reestab-

lish the host’s control over key aspects of the storage device

management [25]. ZNS opens unique opportunities for cross-

layer optimizations that allow novel storage-application co-

design simultaneously tailored to the properties of the storage

USENIX Association 2022 USENIX Annual Technical Conference 1

media and its use by applications [25].

At a high level, ZNS introduces the concepts of zones.

Zones disallow in-place updates and require their blocks to be

written sequentially. To reclaim the space in a zone it needs

to be reset, and new writes can be issued. One important

benefit of the ZNS interface over prior attempts to expose

flash media control to applications (i.e., raw flash or open-

channel SSD [26]), is that it enables host-side storage control

without having to deal with low-level media management

such as wear-leveling or error correction.

In this work, we introduce ZNSwap, a novel swap sub-

system for Linux that explores the advantages of the syn-

ergy between the SSD management and the OS swap logic,

leveraging the ZNS interface to overcome the swap perfor-

mance issues with block-interface SSDs. While prior works

observed that the direct application control over SSDs can

be beneficial in the context of file-systems and key-value

stores [25, 26, 30, 59], ZNSwap is the first to leverage such

control for the OS swap on SSDs.

ZNSwap provides a novel, space-efficient host-side mecha-

nism for SSD space reclamation we call ZNS Garbage Collec-
tor (ZNGC). Unlike the device-side GC of traditional SSDs,

ZNGC is tightly integrated with the OS and has direct access

to OS data structures which it uses to optimize its operation.

ZNGC design poses a conceptual challenge, however. The

space reclamation process naturally involves the migration of

logical blocks on the device, without coordinating the block

location changes with the applications that own the stored

data. This is not a problem for an SSD-side GC because the

user-visible Logical Block Addresses (LBA) remain intact.

However, applying this solution to the host-side ZNGC would

incur unacceptable space overheads in the host, requiring

to maintain reverse mapping for every 4KiB block in TB-

scale devices. ZNSwap avoids these overheads in the host

by storing the reverse mapping information into the logical

block metadata being written alongside the swapped-out page

contents. The mapping is guaranteed to be correct during the

page lifetime.

More specifically, ZNSwap brings the following benefits:

Fine-grain space management. ZNSwap obviates the need

for TRIM commands, achieving higher performance and better

space utilization. The OS uses TRIMs to hint to a Block SSD to

deallocate specific LBAs, reducing the load on the SSD-side

GC. Unfortunately, the use of TRIMs have been mostly dis-

abled in the OS swap for their large overheads [35, 39, 50, 54],

at the expense of significant bandwidth drop due to the artifi-

cial space bloat (§ 3.1.1). In ZNSwap, the ZNGC leverages

the direct access to the OS internal page validity structures,

without the costly overheads associated with TRIMs.

Dynamic ZNGC optimization. ZNSwap dynamically ad-

justs the number of swapped-in pages that are also stored in

the swap device, improving the performance for read-mostly

and mixed read-write workloads. The OS keeps a copy of

unmodified swapped-in memory pages in the swap device

to avoid the swap-out penalty for those pages. The amount

of disk space such pages may occupy is statically capped

by the OS (50% in Linux, non-configurable). However, this

static threshold does not fit all workloads: lower values de-

grade read-mostly workloads, whereas higher values affect

mixed read-write workloads (§ 3.1.2). ZNSwap monitors the

WAF and decreases the storage occupancy when necessary

by reclaiming the SSD space from swapped-in pages.

Flexible data placement and space reclaim policies. ZN-

Swap allows easy customization of the disk space manage-

ment policies to tailor the GC logic to the swap requirements

of a specific system. For example, a policy may force co-

location of data with similar lifetimes onto the same zone,

which was shown to be useful before [28, 34, 44, 56], or

achieve better performance isolation by dedicating a separate

zone to handle swap from a specific tenant.

Accurate multi-tenancy accounting. As the ZNGC runs on

the host, ZNSwap integrates with the cgroup accounting mech-

anisms to explicitly attribute GC overheads to different ten-

ants, thus improving performance isolation between them.

To summarize, our main contributions are as follows:

• Thorough analysis of traditional Block SSDs’ drawbacks

when used as swap devices.

• A mechanism to enable ZNS SSDs to serve for swap, with-

out resource-expensive redirection mechanisms in the host,

by leveraging logical block metadata for efficient reverse-

mapping.

• Custom swap-aware SSD storage management policies

which reduce WA, improve performance, and achieve bet-

ter isolation in multi-tenant environments.

• Extensive evaluation on standard benchmarks and real appli-

cations, demonstrating ZNSwap’s performance gains, e.g., up

to 10× lower 99th percentile latency and 5× higher through-

put for memcached, with 2.5× lower WAF when compared

to traditional swap on Block SSD.

2 Background

OS swap. When a system encounters memory pressure, it

selects victim memory pages for eviction to a swap device.

The OS unmaps the page chosen for eviction from the page-

tables and swaps-out the page, writing it to the swap device.

Linux divides the space on a swap device into memory-

page-sized blocks called swap-slots. The OS allocates a

new slot for each page being swapped-out. When a page

is swapped-in and the utilized swap device capacity is below

50%, Linux keeps the copy of the page both in memory and

in the swap. Such pages belong to the swap-cache. The OS

evicts swap-cache pages without writing them back to the

swap. The swap-slot is freed upon the first write to a swap-

cache page, and the page is removed from the swap-cache.

Block SSD space management. The SSD’s FTL maps Log-

ical Block Addresses (LBAs) to the physical data locations

2 2022 USENIX Annual Technical Conference USENIX Association

within erase-blocks on the device. An update to a logical

block is implemented by writing the new data to a separate

erase-block, and then remapping the host-side LBA to the

new block, followed by invalidating the old one. To free space

for new writes, a Garbage Collector (GC), executed by the

SSD controller, reclaims the invalidated blocks and consol-

idates the still-valid blocks from multiple erase-blocks to a

new erase-block, and then erases the freed erase-blocks. This

operation requires over-provisioning (OP) of the flash media

in the drive in order to reduce the number of copies during

the GC operation.

The device-side GC competes for bandwidth with the user

I/O. The relative increase in the amount of data written due

to GC vs. the external writes is called a Write Amplification
Factor (WAF). The smaller the OP, the higher the WAF and

the lower the user-visible performance of the device [34].

Zoned Namespace (ZNS) is a new storage interface for

SSDs [25]. A ZNS SSD is organized as a set of logically-

addressable zones. Each zone is physically aligned to an

SSD’s erase-block size. Reads inside a zone can be random,

but writes must be sequential. Writing to a zone can be done

via the common write command or through the Zone Append
command. The latter works by the host specifying the zone,

and the SSD returning the specific write location upon com-

pletion, which allows multiple in-flight requests to the same

zone [24] (unlike the write command).

Each zone may be either Empty (initial state), Open (after

the first write) or Full (no longer writable). The SSD main-

tains a write pointer to the next logical block for each Open
zone. To rewrite a zone, it must be reset, which transitions it

into an Empty state. There is a hardware limit on the number

of simultaneously Open zones.

3 Motivation

Swap performance is important for data centers. The pro-

liferation of fast flash-based storage revitalized the use of

swap as a way to maximize memory utilization and reduce

costs. Today, swapping does not serve for sustaining severe

memory pressure alone. Rather, swap acts as a memory

extension during moderate loads, e.g., to optimize the in-

memory balance between file-backed and anonymous mem-

ory pages [3].

Thus, the swap performance is becoming increasingly im-

portant. Recent works propose to accelerate the swap with

dedicated hardware [42]. Linux kernel added optimizations

to its memory reclamation mechanism [13]. Alibaba Cloud

added a per-cgroup background reclaim mechanism [12] to

improve multi-tenancy support in data centers. Facebook in-

troduced swap controls for the cgroupv2 mechanism and used

it in the fbtax2 project to improve system efficiency [10].

This trend highlights the importance of swap in modern

systems. However, most of the current works focused on the

OS logic alone. Here we present a thorough analysis of the

Linux swap performance focusing on the interplay between

the swap logic and the SSD behavior.

3.1 Performance anomalies of swap on SSDs

3.1.1 GC is not aware of deallocated swap-slots

As shown in Figure 1, the swap bandwidth decreases as the

swapped-out data occupies a larger part of the device. In

general, this behavior is expected because the GC overheads

grow proportionally to the amount of actively updated data.

However, the drop should not occur when a device is almost

empty (occupied only 10% of its capacity).

The root cause is that the device-side GC is not aware
that the OS discards some swapped-out pages and invalidates
their respective swap-slots because the OS does not by default

notify the SSD. Therefore, the actual occupancy of the swap

device is much higher than the one visible to the OS, leading

to higher GC overheads.

To cope with this issue, most SSDs implement a TRIM com-

mand that allows the OS to hint to the SSD to reclaim the stor-

age of invalidated swap-slots. However, in practice, popular

Linux distributions (e.g., Debian, Ubuntu) disable the use of

TRIM command for swap [7, 9, 15, 21]. The reasons include

TRIM dispatching overheads, the long latency of the TRIM
command, and the complexity of supporting asynchronous

TRIMs [35, 39, 50, 54, 54].

When TRIMs for swap are explicitly enabled, Linux issues

the command once for a batch (cluster) of 512 invalidated

swap-slots, to reduce the overheads. Notably, these swap-slots

must be contiguous in the LBA address space [1].

To see the performance effect of TRIMs, we run the same

random-write vm-scalability benchmark as in Figure 1,

but with TRIMs enabled (see § 6 for the setup). We measure

the swap-out bandwidth and WAF over time as the device is

being used to illustrate gradual performance degradation.

Figure 2 shows that TRIMs (512-slot) have negligible ef-

fect. This is because the LBA contiguity requirement of TRIM
clusters in Linux effectively prevents issuing TRIMs for the

majority of the invalidated slots. These results corroborate the

note in the swapon man page [20] that enabling TRIMs often

does not improve swap performance.

Finer-grain TRIMs are not effective either. To demonstrate

this, we develop a special mechanism that enables TRIMs for

small contiguous clusters of eight swap-slots. This is not a

practical approach, however, due to its high overheads (see

§ 6.1.1) Figure 2 shows slight performance improvement, but

still 2× lower than the maximum bandwidth. Clusters smaller

than 8 slots result in a prohibitively high rate of TRIMs, so the

SSD cannot keep up with the swap-slot invalidation rate.

Observation I: TRIMs are not effective at lowering GC
overheads for swap.

USENIX Association 2022 USENIX Annual Technical Conference 3

Figure 2: Swap-out band-

width over time. Random

memory writes using 40% of

swap capacity.

Figure 3: Swap-in bandwidth

of random reads as a function

of swap capacity utilization.

3.1.2 Swap cache is not aware of GC

We execute the vm-scalability benchmark to perform uni-

form random reads on a large chunk of memory exceeding

physical RAM and measure the swap performance for differ-

ent values of the swap device utilization. Ideally, we expect

the read performance to be independent of the utilization. In-

stead, Figure 3 shows a 6.9× slowdown and 2.5× WAF above

50% occupancy.

Our analysis shows that this problem occurs due to the

way Linux implements its swap-cache. Recall that this cache

is comprised of pages that are swapped into memory but

the OS still maintains a copy in the swap. When the swap de-

vice’s utilization exceeds 50% – a hard-coded static parameter

we call swap reclamation cutoff, Linux stops adding newly

swapped-in pages to the swap-cache, invalidating their swap-

slots immediately. As a result, the swap-out penalty for such

pages incurs writing a page to the swap device, rather than

discarding them from memory if they were in the swap-cache.

We suggest two possible reasons for this implementation.

First, as the swap device gets full, the swap-slot allocation

algorithm scans the swap-slot array linearly, which becomes

slow [6]. Second, in the context of SSDs, deferring the swap-

slot invalidation for in-memory pages effectively increases

the device occupancy and eventually reduces performance

due to the GC.

Unfortunately, the swap reclamation cutoff establishes

a trade-off between the swap-out performance (preferring

higher cutoff), and WAF (preferring lower cutoff). To illus-

trate, we measure the performance of two applications: one

performing reads, and the other mixing both reads and writes.

This setup aims to show that lower values of the reclamation

cutoff are good for write-intensive workloads and bad for

read-intensive ones. Higher values mirror this behavior.

We execute vm-scalability configured to use 80% of the

swap device’s capacity. Half of the working set fits in RAM.

Figure 4 shows the swap-in and swap-out bandwidth and

WAF as a function of the swap reclamation cutoff. For random

reads, the swap-in performance increases with the reclamation

Figure 4: Swap-in and swap-out bandwidth for random reads

and mixed reads and writes workloads respectively for differ-

ent swap reclamation cutoffs.

cutoff, as fewer pages need to be written back upon eviction,

with all the pages having copies both in the swap and in

memory at the extreme. For the mixed workload, the effect of

the cutoff is not visible with the default Linux configuration

because the performance is low anyway. But with fine-grain

TRIMs and higher baseline performance, smaller cutoff values

are preferable.

Observation 2: The static reclamation cutoff strives to
strike a balance between read and write performance, but
instead aggressively prioritizes write workloads when the
swap occupancy grows.

3.1.3 GC is not aware of page access pattern

We evaluate the performance of workloads with different

memory access patterns using pmbench. We consider two

write workloads: with uniform and with skewed access dis-

tributions (normal, σ = 1
12 of the working set size, the de-

fault in pmbench). The swap-out bandwidth is 480MiB/sec

(maximum for this SSD), and 195MiB/sec (WAF is 2.5) re-

spectively, when using 5% of the swap capacity and 512-slot

TRIMs enabled.

This difference stems from the different lifetimes of

swapped-out pages. With the skewed distribution of memory

writes, there are fewer opportunities for the swap subsystem to

find large contiguous clusters of swap-slots to perform TRIMs,

whereas uniformly distributed writes result in the swap-slots

of similar lifetimes, increasing the chances of finding such

clusters. 8-slot TRIMs are better, but the performance is still

suboptimal: 324MiB/sec, with WAF of 1.5×.

Observation 3: Swap performance may vary significantly
depending on the memory access pattern.

3.1.4 GC is not aware of OS’s performance isolation

Linux’s cgroup mechanism enforces resource isolation among

different processes. In particular, it is possible to isolate

swap bandwidth via blk-throttle. This is useful, e.g., in

container-based virtualized environments to prevent perfor-

mance interference between containers.

4 2022 USENIX Annual Technical Conference USENIX Association

Figure 5: Swap-in bandwidth and WAF of 100%-random-

read cgroup (A) and 50/50%-random-read/write cgroup (B)

co-running together, each throttled to 300MiB/sec reads and

300MiB/sec writes.

We now evaluate the quality of the performance isolation

in a scenario where we expect no interference. We run two

processes, each in its own cgroup limited to 300MiB/sec reads

and 300MiB/sec writes from/to the swap device. One process

performs 100% reads and the other executes an equal mix

of reads and writes, all uniformly distributed. To prevent any

interference the processes are pinned to separate sets of cores,

each with its own device queue. The aggregate bandwidth of

the SSD does not reach its limit (1GiB/sec).

We expect both processes to achieve their maximum band-

width allocation. In practice, during the first 20min of the

execution (Figure 5) no GC is performed, thus the SSD sus-

tains the cumulative request rate from both processes. When

the GC is triggered, the swap-in bandwidth of both cgroups

drops. Importantly, the first process performs only reads, and

should not have been affected by the GC overheads caused

only by the writes of the second process. This behavior stems

from the GC’s inability to distinguish between the I/Os from

different processes, and the OS’s inability to enforce band-

width limits on the GC.

Observation 4: The GC impairs performance isolation
dictated by the host OS.

3.2 Opportunities with swap on ZNS

ZNS SSDs provide better control over physical data place-

ment, thereby enabling tighter coupling between the appli-

cation logic and the device management, and have already

been shown to offer new optimization opportunities for pro-

duction Key-Value-Stores [25]. These results motivate a new

GC-swap subsystem co-design that can leverage this coupling

to mitigate the performance problems of traditional SSDs

discussed above.

Is ZNS essential for performance? An important question

is whether there is an inherent benefit to using ZNS SSDs

over traditional ones, or one can redesign the swap subsystem

alone to achieve the same outcome. In other words, can we

achieve the performance of ZNS by emulating it on top of a

Block SSD?

To answer, we run an experiment on a Block SSD while

using a write access pattern that mimics the one enforced

by ZNS zones. We run multiple threads, each performing

Figure 6: Write bandwidth and WA of sequential writes and

TRIM operations to erase-block sized regions on Block SSD

and ZNS SSD as a function of device utilization.

4KiB logically sequential writes with 1GiB-TRIMs (the size

of an erase-block and a ZNS zone on our device). Each thread

accesses its own part of a drive, and overwrites the available

space, issuing a TRIM for the whole next 1GiB chunk. Multiple

threads are used to emulate typical swap behavior.

We run the experiment for different values of device utiliza-

tion. Figure 6 shows the results. We observe that the perfor-

mance starts to decrease when a device is 30% full, drops to a

half of the maximum bandwidth at 50%, and degrades down

to a quarter at 80%. This is expected because the Block SSD

cannot ensure that host-side TRIMs are aligned with physical

erase-blocks as the writes from different threads get mixed in

the device, even though the host strives to align them at the

LBA level. In contrast, the same experiment on ZNS drives

maintains full bandwidth no matter how full the device is.

We conclude that the ZNS interface offers unique advan-
tages that cannot be achieved with traditional Block SSDs.

ZNS adoption. ZNS SSDs are expected to gain broader adop-

tion in the near future. They hold the promise to reduce stor-

age costs as they lower the internal DRAM size requirements,

and might help reduce media overprovisioning via application-

optimized software stack [25].

While the ZNS interface is not backward compatible with

the in-place block interface, there is growing support for ZNS

at the file system level. For example, F2FS and Btrfs in Linux

can utilize ZNS drives.

These trends motivate us to tailor OS swap for ZNS SSDs.

4 Design

ZNSwap addresses three key design goals.

Resource-efficient Host-side GC. Reclaiming storage space

in ZNS SSDs requires a host-side process akin to a GC that

consolidates valid blocks from fragmented zones into new

ones, subsequently erasing the freed zones. The primary chal-

lenge is in minimizing the memory and CPU overheads as-

sociated with the host-GC operation. This is because, unlike

the device-side GC, the host-side GC directly competes for

these host resources with regular applications. In essence, we

need to on-load the GC onto the CPU from the device with

minimal costs, thereby enabling its tighter integration with

the swap.

USENIX Association 2022 USENIX Annual Technical Conference 5

ZNS Page
Reclaim

znGC NVME

Policy
Manager

blkmq
I/O

manager

VM subsystem Block layer

Drivers

DATA
MD

Zone
allocator

......

ZNS
SSD

11

Swap
Cache
Swap
Cache

Page
Tables
Page

Tables 22 33

44

77 88

55
66

99
Mem. reclaim

Figure 7: ZNSwap overview. Shaded shapes are internal ZN-

Swap components.

These resource constraints preclude direct porting of ex-

isting host-side GC implementations. In particular, such im-

plementations commonly maintain large translation tables

(FTL) [32, 37], which consume about 1GiB for every TiB

of data. The tables are frequently updated by writes and GC

operations and accessed during reads. Given the typically

poor locality of swap-induced I/O accesses [43, 55], these

tables have to be resident in host memory. Maintaining the

extra level of indirection between logical and physical block

addresses appears to be inevitable to allow the host-side GC

to move data without affecting the applications using it.

Our host-side GC, znGC, eliminates the need for the extra

level of indirection entirely. It takes advantage of the fact that

the swapped-out pages are still maintained in their owner’s

page tables, and thus stores the relevant kernel reverse map-

ping metadata alongside the swapped-out page in the SSD. It

also avoids I/O overheads to manage the reverse mappings

by using the per-LBA metadata region available in NVMe

devices as we describe in §§ 4.2 and 5.1.

ZNGC-OS integration. The key benefit of ZNGC over

device-side GC is the ability to access the information ex-

posed by the OS to optimize the swap I/O performance. For

example, ZNGC may consult the OS-maintained swap-slot ar-

ray to identify OS-invalidated swap-slots and avoid redundant

copies without using TRIMs. We explain this and additional

optimizations in § 4.3.

Swap data placement policies. Swap data placement may

have a significant effect on the system performance, but the

placement policy may depend on the specific execution en-

vironment. For example, a policy to achieve better resource

isolation between a pair of processes might prefer storing all

the pages of the same process in the same SSD zone. We

strive to facilitate the implementation of such policies via a

set of APIs that hide the complexity of zone management and

ZNGC logic. We explain the API and the policies in § 4.3.

4.1 Overview

Figure 7 shows ZNSwap’s main design components. We ex-

plain each component and its role using the swap-out path as

an example.

After a page to be swapped-out is selected by the OS, it is

passed to the ZNS page reclaim 1 which handles the page-

table and swap-cache operations 2 . In contrast to the original

swap logic, it updates the destination location for the swapped-

Page
Tables

vm_area_struct ZNS SSDProcess “A” virtual
address space

...

Process “B” virtual
address space

...
struct page
index
mapping...

...

vm_area_struct

anon_vma
mm_struct
pgd ..

..

Block MD
anon_vma
index ...

Block Data
Block MD
anon_vma
index ...

Block Data

11

2233

44
55

Figure 8: Linux reverse mapping overview. Shaded shapes

are data structures accessed during ZNGC reverse mapping.

out page after it has been written, as dictated by the ZNS zone-

append interface. Before writing a page, the page reclaim

module consults the policy manager 3 which determines

the destination zone and may guide ZNGC to free certain

zones on the device. The policy manager incorporates custom

policies that can be tailored to specific system requirements.

The zone allocator 4 seamlessly handles Full zones and

allocates a new zone when necessary.

The page is then submitted to the block layer 5 , which

subsequently passes the page to ZNSwap’s I/O manager 6 .

The I/O manager merges zone-append operations whenever

possible, and generates an I/O request containing the page’s

data and reverse mapping information used by ZNGC. Finally,

the I/O manager hands off the I/O requests to the NVMe driver

7 which writes to the ZNS SSD 8 , and updates the reclaim

module with the page location on the SSD 9 .

4.2 ZNGC

ZNSwap’s reclamation mechanism, ZNGC, is tightly inte-

grated with the kernel virtual memory (VM) subsystem.

ZNGC runs as a daemon in the kernel and is triggered ei-

ther when the number of Empty zones is low, or via explicit

requests by the ZNSwap policy.

Contrary to Block SSDs, a page moved by ZNGC is as-

signed a new host-visible address. Without an additional trans-

lation layer, ZNGC must update the page tables holding the

original page swap-slot to reflect the new location. To this end,

ZNGC stores the relevant reverse-mapping metadata along-

side the data in the ZNS SSD’s per-LBA metadata region to

assist later in updating the page tables. The storage interface

(i.e., NVMe) allows to retrieve the metadata together with the

respective data block in a single I/O operation. Thus, ZNGC

retrieves the metadata to perform the reverse lookup of a given

page and then updates the page table(s) that own it.

An important question remains: which information needs

to be stored in the page metadata to guarantee that the reverse

mapping remains correct during its lifetime?

To answer it, we leverage the same main data structures and

procedures in the Linux kernel used to implement its reverse

mapping scheme (Figure 8).

Background: Linux memory mapping structures. Recall

that virtual memory pages in a process’ address space belong

to virtual memory areas (vmas) that represent virtual mem-

ory allocations. vmas belong to a processes’ virtual memory

6 2022 USENIX Annual Technical Conference USENIX Association

address spaces (mm_structs), which hold the page table di-

rectory (pgd). The physical page descriptor (struct page)

holds metadata enabling the reverse mapping. ZNGC stores

the same metadata fields in the logical block’s metadata on

the SSD.

To locate all page table entries associated with a physical

page, the reverse mapping procedure accesses the anon_vma
1 data structure, which is present between each physical page

and the virtual memory area (vma) structures that map it1. The

anon_vma structure holds a list of vmas which may map the

page 2 and accounts for changes to the virtual mappings of

the physical page. The physical page’s descriptor (struct
page) does not not directly account virtual mapping changes,

rather, the descriptor holds a pointer to the anon_vma in its

mapping field.

The mm_structs of each of the vmas that may map the page

are accessed 3 , and their page tables are walked 4 to locate

the page table entries. To calculate the virtual address used

to walk the page tables, the index metadata value 5 along

with the vma’s start virtual memory address are used. The

physical address corresponding to the physical page we have

initialized the reverse mapping procedure is located in the

last level page table entries and subsequently returned. Since

swapped-out pages do not have a valid physical address in

their page table entry, ZNGC returns the entries that hold the

swapped-out location of the swap-slot we were performing

the reverse mapping procedure.

Since the anon_vma structure is freed when there are no

more vmas which may map the page and the anon_vma pointer

in the struct page does not change, storing the pointer to

the anon_vma as well as the mapping’s offset (index) within

the logical block’s metadata on the SSD enables the same

functionality as reverse mapping within the kernel.

4.3 ZNGC-swap integration

Physical zone information. Each zone is associated with a

map of swap-slots. The map holds information on the use

of each swap-slot, and whether it is valid, or swap-cached

(similar to Linux’s swap_map). This information is used by

ZNGC during the space reclamation. Note that a swap-slot

can be discarded by the OS and ZNGC becomes immediately

aware of the change, without using TRIMs as in Block SSDs.

ZNGC may decide to reclaim some zones that are mostly free

but hold some of the swap cache pages if it runs out of free

storage space, making the swap reclamation cutoff parameter

in Linux unnecessary.

Swap-zone abstraction. Active zones that can be used for

swap-slot allocation are exposed via a swap-zone abstraction.

A swap-zone is a virtual entity used to hide the complexity

of managing physical SSD zones. Swap-zones are backed by

Open zones. When an underlying physical zone transitions

1anonymous pages and vmas only

Function Purpose

void rec_zn(int zn) Reclaim specified zone

void pg_inf(pg_i*, u64 pfn) Get page statistics

void vm_inf(vm_i*, u64 pfn) Get information on VMA

void zn_inf(zn_i*, int zn) Get information on zone

void swap_inf(swap_i*) Get ZNSwap statistics

typedef struct {
u64 last_swapout_t;
u16 access_bit_vec;
int owner_pid;
u64 cgroup_id;

} pg_i;

typedef struct {
u64 vm_flags;
u64 size;
int readahead_win_sz;
u64 cgroup_id;

} vm_i;

typedef struct {
int zone_id;
int capacity;
int occupied_slots;
int invalid_slots;
int swap_cache_slots;
int swap_zone_id;

} zn_i;

typedef struct {
u64 num_{slots ,zns};
u64 free_{slots ,zns};
u8 zslot_array_sz;
u32 {high ,low}_wmark;
bool gc_running;

} swap_i;

Table 1: ZNGC policy API.

to the Full state, it is seamlessly replaced by another Open
physical zone. The total number of swap-zones is determined

by the limit on the number of Open zones in the device.

ZNSwap policies. ZNSwap provides an API to facilitate the

development of custom data placement and zone reclamation

policies. A policy is invoked when the OS swaps-out a page,

and its primary goal is to determine which swap-zone the page

is written to. If there is a need to reclaim some of the zones,

the policy may (asynchronously) invoke ZNGC to do so for a

specific set of zones. The policies are implemented in a kernel

module. Note that the swap-slot allocation policy operates

at the granularity of swap-zones rather than swap-slots to

conform to the ZNS interface.

API. A policy receives the page frame number (pfn) of the

page being swapped-out and returns the swap_zone_id of the

swap-zone where the swap-slot should be allocated. Table 1

lists the functions that can be invoked by the policy.

We define three sample policies:

per-core policy Attempts to assign a swap-zone per-CPU-

core. If there are more cores than Open zones, the swap-zones

are multiplexed. This mimics Linux’s swap-cluster per core

policy and reduces contention on swap-zones.

hot/cold policy Utilizes a per-page access history bit-vector

maintained by the OS and assigns hot and cold pages to dif-

ferent swap-zones.

cgroup policy Attempts to assign a swap-zone per-cgroup. If

more cgroups are available, the swap-zones are multiplexed.

If cgroup swap limits are set (max number of swap-slots),

the policy will reclaim a zone used by the cgroup whose

number of used zones exceeds the limit the most (as zones

may contain invalidated swap-slots).

Example policy. We use cgroup policy to illustrate the use

of the policy API. When invoked, the policy:

1. Selects the destination swap-zone for the cgroup (using

USENIX Association 2022 USENIX Annual Technical Conference 7

the cgroup_id from pg_inf()).

2. If the number of free physical zones is below a prede-

fined low watermark (swap_inf()):

2.1. Selects a victim cgroup whose number of utilized

physical zones exceed its allocated swap-slot ca-

pacity the most.

2.2. Iterates over the cgroup’s physical zones (obtained

via swap_zone_id from zn_inf() corresponding

to the swap-zone allocation of the cgroup) and

selects the zone with the least amount of valid slots.

2.3. Triggers an asynchronous explicit reclaim on the

victim zone (rec_zn()).

2.4. Repeats the procedure until enough zones have

been reclaimed (step 2.1).

3. Returns the destination swap-zone.

cgroup accounting. When a cgroup’s swapped-out data is

copied during the ZNGC operation, ZNGC’s bandwidth is

accounted as part of the cgroup’s total bandwidth to the device.

We do not yet implement the CPU accounting, but this is not

critical as ZNGC’s CPU overhead is low as we show in § 6.1.1.

4.4 Discussion
ZNSwap introduces the zoned namespace interface to core

kernel mechanisms which used to support only traditional

block devices. The ZNSwap’s design is driven by the fun-

damental characteristics of ZNS SSDs, that are unattainable

with traditional Block SSD, and which dictate the following

design choices:

• Zoned interface: ZNSwap fully adheres to the zoned stor-

age specification, therefore it inherits the specification’s in-

tegral benefits. For example, ZNSwap utilizes zone-append

operations to enable concurrent writes to sequential-write-

only zones, accelerating the swap-out procedure to ZNS SSD

by sequentially appending page data.

• ZNS-related host responsibilities as opportunities: ZNS

requires implementing host-side GC, which present new op-

portunities for WA mitigation, better utilization of the SSD’s

capacity for swap-cache pages, and for improving perfor-

mance isolation.

• Tight integration of ZNSwap with kernel mechanisms:
utilizing fine granularity information the OS attains per swap-

slot enables better synergy between the OS and ZNS SSD.

Hardware limitations. The number of possible destination

zones for swapped-out pages in ZNSwap’s data placement

policies are limited by the number of Open zones the ZNS

SSD supports, which is device specific. The limit affects the

granularity of the policies’ classifications. ZNSwap is de-

signed to support ZNS SSDs with varying number of Open
zones and zone sizes, and abstracts the intricacies of zone

management via the swap-zone abstraction (§ 4.3).

ZNSwap also requires the use of the ZNS SSD’s per-block

metadata (64B). While per-block metadata is currently sup-

ported primarily in enterprise NVMe-SSDs, we believe that

it will be a common feature among ZNS-SSDs.

5 Implementation

ZNSwap adds support for the zoned-interface model to key

kernel mechanisms located in several subsystems. We imple-

mented ZNSwap in Linux 5.12 with 4K LOC2 (CLOC [8]).

5.1 ZNS page reclaim
Linux’s reclamation algorithm is incompatible with the zone-

append interface because it assumes that the write location of

the swapped-out data is known before the write completion.

Specifically, the algorithm uses the swap-slot as the key in the

swap-cache for the page currently undergoing reclamation. If

a page is accessed while it is being written to the swap device,

a page-fault is raised, and the kernel locates the page in the

swap-cache using the swap-slot entry to remap it.

ZNSwap redesigns the swap-out mechanism not to rely on

the pre-acquired swap-slot entry. The main idea is to utilize

the dirty bit of the page’s page-table entry to indicate whether

the page has been dirtied during the data transfer to the swap

device. Write access to such a page does not raise a page-fault

since the page is still mapped in the page-table. Rather, we

check the dirty bit in the page-table when unmapping it. We

provide more details in Appendix A.

5.2 ZNGC
We now describe the zone reclamation process in detail.

ZNGC first selects a candidate zone from a preselected set

of zones supplied by the policy. Given a zone, ZNGC scans

through batches of pages until a whole zone is reclaimed.

Figure 9 depicts the main stages:

Gather. ZNGC checks the swap-slots in the candidate zone.

Swap-slots of the pages currently cached by the swap-cache

are removed from the swap-cache and their swap-slots are

invalidated. Occupied valid swap-slots are gathered into a

pre-allocated array of block IOs to perform device reads. This

stage completes when the block IO array is full, or until it

reaches the end of the zone.

Read. The occupied blocks IOs containing the read opera-

tions are dispatched as a batch of requests to the device. The

destination of each read operation corresponds to a page from

a pre-allocated page pool. The metadata for each swap-slot is

read from the device into a buffer.

Write. Once all read operations are complete, each occupied

page from the page pool is examined and assigned a desti-

nation zone based on the ZNGC-swap policy. The block IO

array is subsequently reused to hold all the pending write

requests, which are dispatched as a batch.

2https://github.com/acsl-technion/znswap

8 2022 USENIX Annual Technical Conference USENIX Association

Victim swap-
zone map

1. Gather

Unused swap slot
Swap slot is cached
Occupied swap slot

Gather slots for reads

Sc
an

Remove from swap cache
and unuse swap slot

Reserved BIO
structs

Reverse-mapping
MD - from per block
MD in SSD

2. Read
Reserved BIO

structs
Submit requests

to ZNS SSD

Page
data

3. Write

Submit requests
to ZNS SSD

Prealloced
page pool
Prealloced
page pool

Reserved BIO
structs

Select destination
zone based on

policy and prior
location

Mark victim and destination swap
entry as having cache

4. Activate

Reverse map lookup
(get PTEs)

VictimDest.
Remap PTEs to new

swap slot

Clear source and
destination slot

cache
Page MD

buffer
Page MD

buffer

Prealloced
page pool
Prealloced
page pool

Figure 9: ZNGC: main stages in garbage-collecting a victim zone.

Activate. After the write operations complete, the correspond-

ing swap-slots in the victim’s zone are re-examined. If a swap-

slot is still valid and occupied, it is marked as if it resides in

swap-cache in both victim and destination zones, to indicate

to other kernel procedures that these swap-slots are currently

in use. The page-table entries corresponding to the victim

swap-slots are subsequently remapped to hold the destination

swap-slots with the help of the reverse mapping information

obtained from the metadata (mapping and index). Finally,

the victim swap-slots are cleared. After ZNGC traversal over

a zone is complete, the zone is reset.

Concurrent accesses to swapped-out pages undergoing mi-

gration trigger a regular swap-in operation. ZNGC will skip

the corresponding swap-slot’s migration as the page resides in

memory, and will continue with the reclamation of the zone.

ZNGC does not perform dynamic memory allocations and

is designed to occupy a minimal amount of physical memory

(up to 5MiB).

5.3 I/O manager
ZNSwap’s I/O manager adds support for zone-append merges

and seamlessly stores the per-page reverse-mapping informa-

tion into the metadata region of each written LBA.

Zone append merges. ZNGC and the page-out procedures

take advantage of the blk_plug mechanism to batch together

zone-append operations destined to the same zone. We add

support for zone-append merges in the block layer by iden-

tifying block IOs destined towards the same zone that are

waiting to be drained and merge the page-list of each block

IO, creating a single block IO request. Once the request has

been completed, we iterate over the pages in the request and

generate an independent completion notification to each of

the merged block IOs with their respective write location,

calculated from their offset within the merged block IO and

its final location.

Reverse mapping metadata. The I/O manager allocates a

DMA-mapped physical page pool for metadata associated

operations. The pages serve as a host buffer for the per-page

metadata, and act either as a source or target location for

append and read I/Os, respectively. The DMA address of the

pages is supplied as part of the per-LBA metadata for each

command. When serving a swap-out append operation, each

LBA stores 16 bytes of metadata for the reverse mapping

information of the page (mapping and index).

6 Evaluation

Our evaluation demonstrates the benefits of ZNSwap using

ZNS SSDs over the Linux swap using Block SSDs. In particu-

lar, we focus on the benefits of integrating the ZNGC with the

host OS and the usefulness of ZNGC policies. We note that

all our benchmarks perform direct memory accesses only, and

impose SSD accesses due to the swap activity. Thus, the ac-

tual SSD access pattern might differ from the memory access

pattern in the benchmark.

Can ZNS drives be used via compatibility layers? Linux

swap does not work on top of ZNS drives, either as a swap-file

or a swap partition. Existing Linux device-mappers such as

dm-zoned [49] and dm-zap [33] aim to expose zoned devices

as regular block devices without any write-pattern constraints

but require large mapping structures for indirection. However,

they do not currently support ZNS SSDs. Therefore, the only

plausible baseline is Linux swap with block SSDs.

Hardware. We use a server with 2× Intel Xeon Silver 4216

CPU and 512 GiB of memory (2× 256 GiB DDR4 2933 Hz),

with Ubuntu 20.04, Linux 5.12.0. HyperThreading is disabled,

the frequency governor is "performance", and "turbo" is dis-

abled to achieve stable results. We use a 1 TB production-

grade Western Digital ZN540 ZNS SSD and an equiva-

lent 1TB conventional Block SSD (with 7% OP) that uses

the same hardware platform and media. Both SSD’s max-

imum sequential read and write bandwidth is 3.2 GiB/sec

and 1 GiB/sec respectively. Random 4 KiB reads and writes

reach 1.4 GiB/sec and 1 GiB/sec respectively. For the ZNS

SSD, the writeable capacity of each zone is 1077 MiB, and is

formatted with the ability to store 64 B of metadata per LBA.

Setup. We configure the swap size to be the size of the system

memory (512 GiB) according to the common practice [19].

The remaining capacity on the drives is filled with data. The

resulting effective OP of the swap partition in the Block SSD

is 12%, therefore we configure ZNSwap to use the same OP.

Before each experiment, the SSD is formatted, followed by

a ramp-up until the workload has reached its steady state [17].

Bandwidth and WAF measurements are sampled at 10 min

USENIX Association 2022 USENIX Annual Technical Conference 9

Figure 10: Swap-out bandwidth of vm-scalability with

random memory writes. As expected, higher device utilization

results in higher GC load.

intervals. The Block SSD’s WAF is measured through the

device’s internal host- and media-writes counters, and the

ZNS SSD’s WAF is measured by recording the number of

writes performed by ZNGC.

Performance metrics and optimal performance. We pri-

marily focus on the swap-out bandwidth as the main per-

formance metric. The rationale is that under write-intensive

memory access pattern, swap-in operations trigger the evic-

tion of an equal amount of dirty pages to the drive. Hence,

the resulting SSD access pattern is an equal mixture of 4KiB

random reads and mostly random writes for Block SSD, and

random reads and sequential writes for ZNS SSD.

The maximum write bandwidth for such a 50%/50% access

pattern on both Block SSD and ZNS SSD drives is measured

to be 488 MiB/sec. Therefore, we claim that the ZNSwap’s

performance benefits over the Linux swap baseline presented

in this section stem primarily from ZNSwap design rather
than from the performance differences among the drives or
the difference in the access patterns.

6.1 Synthetic benchmarks

We use the standard swap performance benchmarks,

vm-scalability [22] and pmbench [58] which allow evalu-

ating the performance of the swap subsystem and the swap

device under different memory access patterns.

We rerun several experiments from the Motivation section

on ZNSwap, to show how it recovers the system performance

for the cases where the standard Linux swap on Block SSDs

suffers from the performance anomalies.

6.1.1 Benefits of ZNGC-swap subsystem integration

Swapping without TRIMs. We execute vm-scalability in

a 2 GiB memory-limited cgroup. In each experiment, we pre-

allocate different amounts of memory to evaluate different lev-

els of the swap device’s capacity utilization. We then perform

random writes to that memory (case-anon-w-rand-mt), re-

sulting in random read/writes from/to the swap device. To

maximize throughput, we execute 64 threads (2× the number

of available cores). This is the same experiment as in § 3.1.1.

Figure 10 shows the results. ZNSwap immediately observes

the OS-managed swap-slot allocation without using TRIMs,

and as such only moves the valid pages when running ZNGC.

While ZNGC adds overheads to the host, ZNSwap outper-

forms the Linux swap in all cases but at 10% utilization due

to the device WA being lower.

CPU overheads of ZNGC vs. fine-grain TRIMs with Block
SSD. We measure the maximum CPU overhead of ZNGC

under 80% swap device utilization in Figure 10. We observe

that ZNGC occupies 15% of a single CPU core. At 10% swap

device utilization, the overhead drops to a negligible 0.3%.

In contrast, the CPU overhead for dispatching 8-slot TRIMs

is 32% of a single CPU core with lower swap performance

compared to ZNSwap.

Swapping without swap reclamation cutoff. We run the

same experiment with read-only and mixed read-write bench-

marks as in § 3.1.2 where we established the performance

degradation due to the static swap reclamation cutoff in the

standard swap. When invoked with ZNSwap, the performance

matches the “ideal” line in Figure 4.

6.1.2 Skewed workloads

We run pmbench configured to allocate 320 GiB of memory

and perform skewed memory writes with the default normal

distribution parameters (σ = 1
12 of the allocated memory). The

distribution directs 80% of the memory accesses to 20% of

the allocated memory considered “hot”. The other 80% of the

allocated “cold” memory occupies 50% of the swap capacity.

The “hot” pages’ lifetime in swap tends to be shorter than for

other pages. In each experiment, we modify the amount of

RAM available to pmbench thus varying the proportion of the

working set swapped-out from 50% to 90%. This allows to

vary the swap device utilization without changing the working

set size and page access pattern across the experiments.

We compare the baseline with ZNSwap with the per-core

policy that ignores the page access frequency, and ZNSwap

with the hot/cold policy that strives to group pages with simi-

lar access frequencies into the same zone (see § 4.3).

We make two observations. First, ZNSwap achieves the

same performance regardless of the access pattern up to 2×
higher bandwidth compared to the baseline for both ZNSwap

policies. Second, the hot/cold policy exhibits 15-20% lower

WA compared to the naive policy, even though this benefit

is not reflected in the swap-out bandwidth in this workload.

Reducing WA is important on its own to achieve a higher

device lifetime [31].

6.1.3 Swap performance isolation in cgroups

We execute two instances of the vm-scalability bench-

mark, each in a different cgroup. Both cgroup A (CG. A) and

cgroup B (CG. B) run with 16 threads. CG. A utilizes 30%

of the swap capacity, and performs random writes, whereas

10 2022 USENIX Annual Technical Conference USENIX Association

Figure 11: Bandwidth distribution among different cgroups,

one reading and another writing data.

CG. B utilizes 10% of the swap capacity and performs only

random reads. In addition, A’s and B’s swap bandwidth is

limited via blk-throttle to 300 MiB/sec. This is the same

experiment as in § 3.1.4.

Figure 11 shows the swap-in bandwidth for each cgroup

under different configurations. If the swap performance isola-

tion was perfect, each cgroup would behave as if it runs with

its own SSD, reaching its target bandwidth (red line). With

Block SSD, however, the target bandwidth cannot be attained.

Figure 5 shows that without the device-GC overhead, the up-

per bound is reached, implying that in this experiment this

overhead indeed causes performance degradation. Similar to

Block SSD, ZNS SSD with ZNSwap’s per-core placement

policy fails to provide swap isolation.

In contrast, with ZNSwap’s cgroup policy, the bandwidth of

the writer process (CG. A) fully absorbs the ZNGC bandwidth

overheads because only the data attributed to that cgroup is

moved by ZNGC. Note that the sum of the bandwidth used

by the swap and ZNGC operations in that cgroup does not

exceed the predefined limit. CG. B attains full bandwidth, and

it is not affected by the ZNGC bandwidth overheads.

6.1.4 Raw swap performance

We stress-test the raw swap-out performance of ZNSwap and

its multi-core scaling. We execute vm-scalability to se-

quentially write (case-anon-w-seq-mt) 500 GiB of data in

a contiguous memory region, while limiting the memory size

to 2 GiB via cgroup. By choosing the sequential access pat-

tern, not reusing the same pages, and limiting the number of

writes to not surpass the device’s capacity, we force the system

to avoid reusing swap-slots thus preventing device-side GC

and swap-in operations. This is done to achieve the highest

performance, stressing the swap software mechanisms.

ZNSwap exhibits the same performance as the traditional

Linux swap, achieving 740 MiB/sec swap-out bandwidth

for a single core, and the maximum device bandwidth of

1 GiB/sec with 4 cores (no graph shown).

6.2 End-to-end application Benchmarks
We evaluate two popular key-value store servers, demonstrat-

ing the benefits of ZNSwap to run large-memory produc-

tion applications. The throughput and latency we obtain are

consistent with those reported for other flash-assisted KVS

works [36, 46, 57].

We execute the KV servers on one NUMA node, and the

client on the other; hence we set the affinity of both NUMA

nodes’ kswapd threads as well as the kznsd thread that ex-

ecutes ZNGC to run on the first NUMA node to co-locate

them with the application. Thus, both ZNSwap and traditional

Linux swap are allocated the same amount of compute re-

sources which they share with the application threads.

6.2.1 memcached-ETC

We run a memcached key-value store [29] using the mutilate
client [45] and Facebook’s ETC benchmark [23]. We eval-

uate a random-skewed access pattern with 90% of requests

accounting for 10% of the keys. Despite this skewness, the dis-

tribution of popular keys in the memory is mostly uniformly

random because they are scattered across different memory

pages. This also dictates random access to the SSD.

We configure memcached to use 32 threads on one NUMA

node, and invoke 32 mutilate client threads on the other

NUMA node. We load the data to the server until we reach

the target swap device capacity utilization. We do not limit

the amount of memory available to the server, thus utiliz-

ing all memory (from both NUMA nodes) for the workload.

For example, 10% swap utilization (51 GiB) implies the total

working set of 563GB. We report the 99p latency of the KV

store, maximum throughput, as well as the WAF of the SSD.

Figure 12 shows that ZNSwap consistently outperforms

Block SSD-based swap in all performance metrics under the

evaluated swap device utilization: under 10% swap device

utilization ZNSwap exhibits 10× lower 99p latency and 5×
higher maximum QPS while not experiencing any WA, as op-

posed to Block SSD which suffers from a 2.5× WAF. With the

added 8 blk. TRIM support for Block SSD, ZNSwap achieves

5× lower 99p, 1.6× higher QPS and 1.1× lower WAF.

6.2.2 redis-YCSB

We use an in-memory redis data store [16] with the YCSB
client [27] configured with 50% reads and 50% updates

(update-heavy configuration) in a 20-80 hotspot distribution

(80% of accesses target 20% of the working set) which is one

of the standard options. This memory access pattern induces

the same distribution of accesses as we evaluated in § 6.1.2,

thereby allowing us to show the application performance im-

pact of the hot/cold placement policy.

redis is executed in cluster-mode consisting of 32 servers-

threads, running on one NUMA node in a RAM-limited

cgroup. It loads a 320 GiB dataset to the cluster. 64 client

threads are spawned on the other NUMA node. Similar to the

microbenchmark in § 6.1.2, we vary the amount of available

RAM while keeping the working set size constant.

USENIX Association 2022 USENIX Annual Technical Conference 11

Figure 12: memcached Facebook ETC 99 percentile latency at the highest throughput

Figure 13: redis 20-80 hotspot distribution 50/50 read/write, 99p latency at maximum throughput

Figure 13 shows the 99p latency, throughput and WA for

ZNSwap’s per-core and hot-cold policies, as well as Block

SSD. Both ZNSwap’s policies outperform Block SSD in

all performance metrics. We observe a 1.27× speedup in

throughput and 1.4× drop in latency with 1.1× lower WA for

ZNSwap’s hot/cold policy compared to the per-core policy.

7 Related work

SSD-friendly swap support. SSDs’ unique characteristics

warranted a body of works [48, 54] that aim to optimize swap

on Block SSDs. These works modify Linux’s page reclaim

policy (similar to CFLRU [52]) to prioritize reclamation of

clean pages and reduce device-side GC overheads without

modifying the GC itself. In contrast, ZNSwap offers a novel

co-design of the host-side GC and the swap mechanisms and

achieves its benefits via tighter coupling between them.

Swap on raw flash. Several early works proposed swap to

raw flash [38, 41, 47] thereby avoiding GC overheads due

to copying blocks of discarded swap-slots. These papers pre-

dated the introduction of native TRIM support in SSDs, which

was supposed to achieve the same effect. ZNSwap shows that

even fine-grain TRIMs are not sufficient, and demonstrates

other benefits of the tight coupling with the OS enabled by

the host-side GC.

Open-channel SSDs [26] expose a low-level storage manage-

ment interface, similarly to ZNS. ZNSwap’s main contribu-

tion is its study of the benefits of host-side SSD management

and swap co-design, not considered in prior works. Further,

unlike ZNS, the adoption of OC-SSDs so far has been limited

due to poor portability and the complexity of the host-side

media control they require, such as media wear-levelling.

Stream-SSDs [40] expose a traditional block interface, and

can reduce WA by utilizing hints so the device may attempt

to co-locate data with similar lifetimes onto the same erase-

blocks. However, Stream-SSDs’ block-interface hinders sup-

port for cross-layer optimizations introduced by ZNSwap on

ZNS-SSDs, which are key to ZNSwap’s performance gains.

Implementing swap data placement support for Stream-

SSDs, akin to ZNSwap’s swap policies, will offer certain ben-

efits in the scenarios where data lifetime can be predicted and

data consolidated into a set number of streams, such as hot/-

cold access patterns (as noted in § 6.1.2). However, under ran-

dom access patterns, Stream-SSDs would perform similarly

to traditional Block SSDs. The performance gains pertaining

to ZNSwap’s cross-layer optimizations that aren’t related to

data-placement policies (i.e., the elimination of TRIMs) ex-

hibit higher performance gains than data-placement policies,

as shown in Figure 10.

8 Conclusion

ZNSwap leverages the recent ZNS SSD interface to enable

tight integration of the storage management mechanisms with

the swap subsystem. ZNSwap introduces a host-side ZNGC

that is co-designed with the swap logic to reduce garbage-

collection overheads and improve system performance, while

also leveraging the tight coupling with the OS and NVMe

metadata interface to avoid the costly flash translation layer

in the host. ZNSwap demonstrates significant performance

advantages of using ZNS for swap in realist scenarios, paving

the way to broader adoption of this new technology.

Acknowledgements

We gratefully acknowledge support from Israel Science Foun-

dation (grants 980/21 and 1027/18) and financial support from

Western Digital.

12 2022 USENIX Annual Technical Conference USENIX Association

References

[1] Swapfile: swap allocation use discard. https:
//git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/commit/?id=
7992fde72ce06c73280a1939b7a1e903bc95ef85,

2009.

[2] Making swapping scalable. https://lwn.net/
Articles/704478/, 2016.

[3] Reconsidering swapping. https://lwn.net/
Articles/690079/, 2016.

[4] NVM Express 2.0 Zoned Namespace Command

Set Specification. https://nvmexpress.org/
specifications, 2018.

[5] SAMSUNG. Ultra-low latency with Samsung Z-NAND

SSD. http://www.samsung.com/us/labs/pdfs/
collateral/Samsung_ZNAND_Technology_Brief_
v5.pdf, 2019.

[6] Swap: try to scan more free slots even when fragmented.

https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=
ed43af10975eef7e21abbb81297d9735448ba4fa,

2020.

[7] Archlinux SSD Optimizations. https:
//wiki.archlinux.org/title/Solid_state_
drive#Continuous_TRIM, 2021.

[8] cloc: Count lines of code. https://github.com/
AlDanial/cloc, 2021.

[9] Debian SSD Optimizations. https://wiki.
debian.org/SSDOptimization#Mounting_SSD_
filesystems, 2021.

[10] Facebook cgroupv2 memory controller. https:
//facebookmicrosites.github.io/cgroup2/
docs/memory-controller.html, 2021.

[11] Kioxia’s PCIe 5.0 SSD Just Hit 14,000 MBps.

https://www.tomshardware.com/news/
kioxia-pcie-5-ssd-just-hit-140000-mbps,

2021.

[12] Memcg backend asynchronous reclaim. https:
//partners-intl.aliyun.com/help/doc-detail/
169535.htm, 2021.

[13] Multi-generational LRU: the next generation. https:
//lwn.net/Articles/856931/, 2021.

[14] OpenStack: Overcommitting CPU and RAM.

https://docs.openstack.org/arch-design/
design-compute, 2021.

[15] Red Hat: Discarding Unused Blocks. https:
//access.redhat.com/documentation/en-us/
red_hat_enterprise_linux/8/html/managing_
file_systems/discarding-unused-blocks_
managing-file-systems, 2021.

[16] Redis. https://redis.io, 2021.

[17] Solid State Storage Performance Test Specification.

https://www.snia.org/sites/default/files/
technical_work/PTS/SSS_PTS_2.0.2.pdf, 2021.

[18] Swap file on Amazon EC2. https://aws.
amazon.com/premiumsupport/knowledge-center/
ec2-memory-swap-file/, 2021.

[19] Swap space on Amazon EC2. https://aws.
amazon.com/premiumsupport/knowledge-center/
ec2-memory-partition-hard-drive/, 2021.

[20] swapon(8) Linux man pages. https://man7.org/
linux/man-pages/man8/swapon.8.html„ 2021.

[21] Ubuntu: TRIM the swap partition. https:
//wiki.ubuntuusers.de/SSD/TRIM/
#TRIM-der-Swap-Partition, 2021.

[22] vm-scalability. https://git.kernel.org/pub/scm/
linux/kernel/git/wfg/vm-scalability.git,

2021.

[23] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song

Jiang, and Mike Paleczny. Workload analysis of a large-

scale key-value store. In ACM SIGMETRICS Perfor-
mance Evaluation Review, volume 40, pages 53–64.

ACM, 2012.

[24] Matias Bjørling. Zone Append: A New Way of

Writing to Zoned Storage. In Vault Linux Storage
and Filesystems Conference, Santa Clara, CA, February

2020. USENIX Association.

[25] Matias Bjørling, Abutalib Aghayev, Hans Holmberg,

Aravind Ramesh, DL Moal, G Ganger, and George

Amvrosiadis. ZNS: Avoiding the Block Interface Tax for

Flash-based SSDs. In Proceedings of the 2021 USENIX
Annual Technical Conference (USENIX ATC’21), 2021.

[26] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.

LightNVM: The linux open-channel SSD subsystem. In

15th USENIX Conference on File and Storage Technolo-
gies FAST 17, pages 359–374, 2017.

[27] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu

Ramakrishnan, and Russell Sears. Benchmarking cloud

serving systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,

2010.

USENIX Association 2022 USENIX Annual Technical Conference 13

[28] Peter Desnoyers. Analytic models of SSD write perfor-

mance. ACM Transactions on Storage (TOS), 10(2):1–

25, 2014.

[29] Brad Fitzpatrick. Distributed caching with memcached.

Linux journal, 2004(124):5, 2004.

[30] Javier González, Matias Bjørling, Seongno Lee, Charlie

Dong, and Yiren Ronnie Huang. Application-driven

flash translation layers on open-channel SSDs. In Pro-
ceedings of the 7th non Volatile Memory Workshop
(NVMW), pages 1–2, 2016.

[31] Laura M Grupp, John D Davis, and Steven Swanson.

The bleak future of NAND flash memory. In FAST,

volume 7, pages 10–2, 2012.

[32] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar.

DFTL: a flash translation layer employing demand-

based selective caching of page-level address mappings.

ACM SIGPLAN Notices, 44(3):229–240, 2009.

[33] Hans Holmberg. dm-zap: Host-based FTL

for ZNS SSDs. https://github.com/
westerndigitalcorporation/dm-zap, 2021.

[34] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias

Iliadis, and Roman Pletka. Write amplification analy-

sis in flash-based solid state drives. In Proceedings of
SYSTOR 2009: The Israeli Experimental Systems Con-
ference, pages 1–9, 2009.

[35] Choulseung Hyun, Jongmoo Choi, Donghee Lee, and

Sam H Noh. To TRIM or not to TRIM: Judicious trim-

ing for solid state drives. In Poster presentation in the
23rd ACM Symposium on Operating Systems Principles,

2011.

[36] Junsu Im, Jinwook Bae, Chanwoo Chung, Sungjin Lee,

et al. Pink: High-speed in-storage key-value store with

bounded tails. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC’ 20), pages 173–187, 2020.

[37] Song Jiang, Lei Zhang, XinHao Yuan, Hao Hu, and

Yu Chen. S-FTL: An efficient address translation for

flash memory by exploiting spatial locality. In 2011
IEEE 27th Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–12. IEEE, 2011.

[38] Dawoon Jung, Jin-soo Kim, Seon-yeong Park, Jeong-

uk Kang, and Joonwon Lee. Fass: A flash-aware swap

system. In Proc. of International Workshop on Software
Support for Portable Storage (IWSSPS). Citeseer, 2005.

[39] Dong Hyun Kang and Young Ik Eom. TO FLUSH or

NOT: Zero padding in the file system with SSD devices.

In Proceedings of the 8th Asia-Pacific Workshop on Sys-
tems, pages 1–9, 2017.

[40] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and

Sangyeun Cho. The multi-streamed solid-state drive. In

6th {USENIX} Workshop on Hot Topics in Storage and
File Systems (HotStorage 14), 2014.

[41] Sohyang Ko, Seonsoo Jun, Yeonseung Ryu, Ohhoon

Kwon, and Kern Koh. A new linux swap system for

flash memory storage devices. In 2008 International
Conference on Computational Sciences and Its Applica-
tions, pages 151–156. IEEE, 2008.

[42] Gyusun Lee, Wenjing Jin, Wonsuk Song, Jeonghun

Gong, Jonghyun Bae, Tae Jun Ham, Jae W Lee, and

Jinkyu Jeong. A case for hardware-based demand pag-

ing. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages

1103–1116. IEEE, 2020.

[43] Jaehun Lee, Sungmin Park, Minsoo Ryu, and Sooyong

Kang. Performance evaluation of the SSD-based swap

system for big data processing. In 2014 IEEE 13th Inter-
national Conference on Trust, Security and Privacy in
Computing and Communications, pages 673–680. IEEE,

2014.

[44] Jongsung Lee and Jin-Soo Kim. An empirical study

of hot/cold data separation policies in solid state drives

(SSDs). In Proceedings of the 6th International Systems
and Storage Conference, pages 1–6, 2013.

[45] Jacob Leverich. Mutilate: high-performance mem-

cached load generator, 2014.

[46] Cheng Li, Hao Chen, Chaoyi Ruan, Xiaosong Ma, and

Yinlong Xu. Leveraging NVMe SSDs for building a

fast, cost-effective, LSM-tree-based KV Store. ACM
Transactions on Storage (TOS), 17(4):1–29, 2021.

[47] Mingwei Lin and Shuyu Chen. Flash-aware linux swap

system for portable consumer electronics. IEEE Trans-
actions on Consumer Electronics, 58(2):419–427, 2012.

[48] Mingwei Lin, Shuyu Chen, and Guiping Wang. Greedy

page replacement algorithm for flash-aware swap sys-

tem. IEEE Transactions on Consumer Electronics,

58(2):435–440, 2012.

[49] Damien Le Moal. dm-zoned: Zoned Block Device de-

vice mapper. https://lwn.net/Articles/714387/,

2017.

[50] Trong-Dat Nguyen and Sang-Won Lee. I/O charac-

teristics of MongoDB and trim-based optimization in

flash SSDs. In Proceedings of the Sixth International
Conference on Emerging Databases: Technologies, Ap-
plications, and Theory, pages 139–144, 2016.

14 2022 USENIX Annual Technical Conference USENIX Association

[51] Ohshima, S. Scaling flash technology to meet appli-

cation demands. Keynote 3 at Flash Memory Summit

2018, 2018.

[52] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-

soo Kim, and Joonwon Lee. CFLRU: a replacement

algorithm for flash memory. In Proceedings of the 2006
international conference on Compilers, architecture and
synthesis for embedded systems, pages 234–241, 2006.

[53] SeongJae Park, Yunjae Lee, Moonsub Kim, and Heon Y

Yeom. Automating context-based access pattern hint

injection for system performance and swap storage dura-

bility. In 11th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 19), 2019.

[54] Mohit Saxena and Michael M Swift. FlashVM: Virtual

Memory Management on Flash. In USENIX Annual
Technical Conference, 2010.

[55] Taejoon Song, Gunho Lee, and Youngjin Kim. En-

hanced flash swap: Using NAND flash as a swap device

with lifetime control. In 2019 IEEE International Con-
ference on Consumer Electronics (ICCE), pages 1–5.

IEEE, 2019.

[56] Benny Van Houdt. Performance of garbage collection

algorithms for flash-based solid state drives with hot/-

cold data. Performance Evaluation, 70(10):692–703,

2013.

[57] Shuotao Xu. Bluecache: A scalable distributed flash-
based key-value store. PhD thesis, Massachusetts Insti-

tute of Technology, 2016.

[58] Jisoo Yang and Julian Seymour. Pmbench: A micro-

benchmark for profiling paging performance on a system

with low-latency SSDs. In Information Technology-New
Generations, pages 627–633. Springer, 2018.

[59] Jiacheng Zhang, Youyou Lu, Jiwu Shu, and Xiongjun

Qin. FlashKV: Accelerating KV performance with open-

channel SSDs. ACM Transactions on Embedded Com-
puting Systems (TECS), 16(5s):1–19, 2017.

USENIX Association 2022 USENIX Annual Technical Conference 15

A Pageout process

Figure 14 illustrates the operations performed during the pa-

geout process in detail.

Traditional page-out. A candidate anonymous memory page

from the inactive-list 1 is selected to be evicted (not recently

accessed 2) and is not in the swap cache 3 , it is assigned

a swap-slot entry 4 . The swap-slot entry is used both as

the destination of the page in the swap device, as well as

its identifier within the swap-cache. After the page has been

inserted into the swap-cache and subsequently unmapped

from the page tables 6 , the swap-slot entry value is inserted

instead. If the page is dirty 7 , it is unmarked as such, the

write operation to the swap device initiates 8 , and the page

is reinserted into the head of the inactive list 9 .

After the page has been successfully written to the swap

device, it is moved to the tail of the inactive list 10 , where it

is then removed for the second time 11 and passes through

the same conditions as in the first iteration. Finally, the page

is freed along with its swap-cache entry 16

If the page is accessed during the write to the swap device,

it is located in the swap-cache using the swap-slot entry, and

will subsequently fail one of the conditions in 12-15 .

ZNSwap page-out. Apart from sampling the accessed bit

in 2 , the dirty bit is sampled, cleared, and stored in the

PG_dirty flag of the struct page. The page is then as-

signed a zone per the defined policy 4 and the append op-

eration to the swap device initiated 5 ; the page is then rein-

serted to the inactive-list 6 . Once the append operation has

been completed and the location of the written data retrieved,

the page is inserted into the swap-cache. The PG_dirty flag

is cleared and the page is moved to the tail of the inactive-list

7 . The page then traverses through 8-11 and is unmapped

from the page tables 13 . If the page has been dirtied since

the append operation has initiated 14-15 , the page-out oper-

ation is aborted. The page is finally freed at 16 .

Unlike the traditional page-out algorithm, an access to the

page while it undergoing write-back to the swap device will

not raise a page-fault and subsequently remapped since it is

still mapped in the page-tables. Rather, the dirty bit in the

page tables is evaluated during the unmapping process 14 ,

which indicates whether it is safe to free the page or not.

16 2022 USENIX Annual Technical Conference USENIX Association

Inactive List Tail Check
accessed

Yes

No

Assign swap slot +
add to swap cache

Unmap page. Populate
PTE with swap slot

Clear dirty and start
write to swap

Page is in
swap cache

No

Page present
in PT

Yes No Page is dirty

Yes Yes

Free page
and remove
from swap

cache

No

Inactive List Tail Check
accessed and
sample dirty
to PG_dirty

Yes

No

Assign zone to
page per

policy

Yes Page present
in PT

Traditional page-out for regular block devices

Page-out for nameless / zone append block devices

Page is in
swap cache

No Yes

Start page
write to swap

No

Yes

1 DM1 DM 2 DM2 DM 3 DM3 DM

4 DM$4 DM$

5 DM$5 DM$

6 D$6 D$

7 D$7 D$11 $11 $ 12 $12 $ 13 $13 $ 14 $14 $ 15 $15 $ 1616

Activate /
rotate page

Reinsert to head of inactive list

When write finishes,
page is moved to the tail

8 $R8 $R

9 $R9 $R

10 $10 $

Populate PTE with old
mapping and rotate page

Activate /
rotate page

Page has been
assigned a

zone
Unmap page.
Populate PTE

with swap slot

Check if old mapping
has dirty bit set

No
No

Page under
writeback:

rotate

Page is
dirty

Free page
and remove
from swap

cache

Reinsert to head of inactive list

When write finishes,
add to swap cache,
clear PG_dirty and

move to the tail

Yes

No

No

Yes

D : dirty PTE
M: mapped in PT
$: swap-cached
R : reclaim
Z: assigned zone

1 DM1 DM 2 M2 M 3 M3 M

5 MZR5 MZR
6 MZR6 MZR

7 MZ$7 MZ$
4 MZ4 MZ

8 MZ$8 MZ$ 9 MZ$9 MZ$ 10 MZ$10 MZ$ 11 MZ$11 MZ$ 12 MZ$12 MZ$

13 Z$13 Z$

14 Z$14 Z$

15 Z$15 Z$ 1616

first iter.
through PFRA
second iter.
through PFRA

Figure 14: Page-out procedure for inactive pages

USENIX Association 2022 USENIX Annual Technical Conference 17

